

Journal of Hazardous Materials 50 (1996) 199-225

A comparision of regulated chemicals versus emitted PICs and PICs for risk analysis

C.C. Lee^{a,*}, G.L. Huffman^a, Y.L. Mao^b

^a U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Sustainable Technology Division, Multimedia Technology Branch, Cincinnati, OH

45268, USA

^b Department of Chemistry, Soochow University, Taipei, Taiwan

Received 9 May 1995; accepted 12 December 1995

Abstract

In general, toxic combustion byproducts (TCBs) are the unwanted residues remaining in flue gases, combustion ashes, and wastewaters from the operation of an incineration or combustion facility. If a combustor is not well designed and operated, it may emit too high a level of TCBs. Categories of TCBs and some example constituents are as follows:

- 1. Acid gas: HCl, NO_x and SO₂;
- 2. Organics: Hydrocarbons such as dioxins and furans (PCDDs and PCDFs);
- 3. Particulates: Trace metals (conventional metals and radioactive metals) and soots;
- 4. Contaminants in ash; and
- 5. Contaminants in spent wastewater.

Pollutants in Category (2) above are generally considered to be the products of incomplete combustion (PICs) in the field of hazardous waste incineration.

TCBs has been one of the major technical and sociological issues surrounding the use of incineration as a waste treatment alternative. Because of the complexity and controversy, the U.S. EPA issued a draft "Combustion Strategy" on May 18, 1993. The objective of the "Combustion Strategy" was to address the needs of and to outline the approaches for upgrading the existing incineration standards to better control TCB emissions.

This article lists those chemicals and metals which are regulated by two major U.S. environmental laws, namely, the Clean Air Act Amendments (CAAA) of 1990 and the Resource Conservation and Recovery Act (RCRA) of 1976. The CAAA is to regulate the air emissions from major sources, and the RCRA is to protect human health and the environment from the management of solid wastes, particularly from waste incineration. This paper also lists the PIC chemicals that were studied under U.S. EPA incineration research programs in the 1980s and the

^{*} Corresponding author.

^{0304-3894/96/\$15.00} Copyright © 1996 Elsevier Science B.V. All rights reserved. PII \$0304-3894(96)01758-X

PIC chemicals that EPA permit writers are considering be the subject of risk analyses during the process of industry's applying for an incinerator operating permit.

1. Introduction

The disposal of solid wastes was an environmental issue of the 1980s and it will continue to be as long as waste is generated. Conventional combustion (of coal, oil and gas) has been the subject of research for many decades, however, incineration research for solid waste destruction had been fairly minimal until about the mid-1970s. During the late 1970s to early 1980s, research on solid waste disposal, particularly hazardous waste disposal, was dominated by the RCRA requirements and was very much focused on stationary incineration processes. The incineration activities during that period were later summarized by Oppelt in his article entitled "Incineration of Hazardous Waste — A Critical Review" [1]. In this article, he concluded that EPA's research data and industry's operating experience indicate that incineration, when compared to the other alternative technologies, offers the highest overall degree of destruction and control for the broadest range of waste streams. Compared with other treatment technologies, incineration has the following additional major advantages:

- 1. *Effectiveness*: It only takes seconds to destroy what landfills may take years to decompose.
- 2. Detoxification: Incineration can routinely achieve 99.99% destruction of any organic, pathogenic, toxic or hazardous substance contained in its feed.
- 3. Volume reduction: The reduction rate is very significant, though it does depend on the ash content of the waste incinerated.
- 4. *Potential energy recovery*: It has been a general practice for many industries to recover energy from waste incinerators.
- 5. No long-term liability: Once a waste is incinerated, the problem will never re-surface again as it can in a landfill.
- 6. Unrecognizable residues: Rendering waste unrecognizable is one of the major requirements for medical waste treatment.

Although incineration has been proved to be the most effective technology to destroy hazardous waste, it has recently received maximum opposition from the public, compared to alternative technologies. National organizations have been established to campaign against incineration. Local communities often mobilize against it. The core of opposition centers around the unfortunate perception that incineration is simply a "landfill in the sky". This misconception is the result, at least in part, to the lack of knowledge on the subject of toxic combustion byproducts (TCBs), particularly, on the subject of the "Products of Incomplete Combustion", otherwise known as PICs.

The authors, working for the EPA, began to write a series of TCB-related articles in 1988 to search for TCB solutions [2–10]. And, their International Congress on Toxic Combustion Byproducts (ICTCB) was convened in 1989 to provide a forum for scientists to discuss TCB issues. The ICTCB has been held at various major universities every two years since its creation. The Fourth ICTCB was held at the University of California at Berkeley on June 5–7, 1995.

The purpose of this article is to list and compare: (1) chemicals that are regulated by the Clean Air Act Amendments (CAAA) of 1990 and by the Resource Conservation and Recovery Act (RCRA) of 1976; (2) PIC chemicals that were studied under the U.S. EPA full-scale incineration research programs of the 1980s; and (3) PIC chemicals that EPA permit writers are considering be the subject of risk analyses during the process of industry's applying for an incinerator operating permit. The CAAA requires EPA to develop emission standards for the regulated chemicals being emitted from major sources, and the RCRA requires EPA to establish performance standards for the incineration of solid wastes including hazardous waste, municipal waste, medical waste, and mixed waste. [Mixed waste is defined as hazardous waste mixed with radioactive components.]

2. RCRA chemicals

2.1. Hazardous waste incineration standards

In the United States, RCRA authorized EPA to develop standards to regulate the incineration of hazardous waste. The key elements of the RCRA incineration regulations are the incinerator performance standards which are specified in 40CFR (Code of Federal Regulations), Part 264.343. The owners or operators of incineration facilities must comply with the specified standards in order to receive a RCRA permit to operate. A summary of the current standards is as follows:

(1) An incinerator must achieve a Destruction and Removal Efficiency (DRE) of 99.99% for each Principal Organic Hazardous Constituent (POHC) designated for each waste feed. The 99.99% DRE was primarily derived from the results of a series of incinerator performance tests [11] and from the conclusions drawn from discussions among many national incineration experts.

(2) The DRE for an incinerator/air pollution control system is defined by the following formula:

$$DRE(\%) = (W_{in} - W_{out})/W_{in} \times 100$$

where:

 $W_{\rm in}$ = mass feed rate of POHC fed to the incinerator

 W_{out} = mass emission rate of POHC to the atmosphere

(as measured in the stack prior to discharge).

(3) An incinerator burning hazardous waste emitting more than 1.8 kg h^{-1} of HCl must remove 99% of the hydrogen chloride from the exhaust gas.

(4) An incinerator burning hazardous waste must not emit particulate matter exceeding 180 mg/dscm corrected to $7\% 0_2$ in the stack gas (unless State regulations require more restrictive emission limits). The correction factor is defined as follows:

Correction factor = 14/(21 - Y)

where Y = measured oxygen concentration in the stack gas on a dry basis (expressed as a percentage).

Waste type and waste code		Waste type and waste code						
Waste type	Hazardous code	Waste ID code						
Listed hazardous waste								
1. Waste from nonspecific sources		F001-F028						
2. Waste from specific sources		K001-K069						
3. Toxic waste	Т	U001-U249						
4. Acute hazardous waste	Н	P001-P122						
Characteristic hazardous waste								
1. Ignitable waste	I	D00 1						
2. Corrosive waste	С	DOO2						
3. Reactive waste	R	DOO3						
4. Extraction procedure (EP) toxicity waste	E	D004-D017						

(5) A trial burn is required to demonstrate the ability of a hazardous waste incinerator to comply with the above performance standards and to enable operating conditions to be set in the permit to ensure continued compliance.

2.2. Definition of RCRA waste

RCRA waste (also known herein as hazardous waste) is defined in RCRA, Section 1004. The term "hazardous waste" means any solid waste, or combinations of solid waste, which because of its quantity, concentration, or physical, chemical, or infectious characteristics, may:

(1) Cause, or significantly contribute to, an increase in mortality or an increase in serious irreversible, or incapacitating reversible, illness; or

(2) Pose a substantial present or potential hazard to human health or the environment when improperly treated, stored, transported, or disposed of, or otherwise managed.

Using the above definition, EPA established four "listed" categories and four "characteristic" categories of hazardous wastes. They and their waste identification (ID) codes are shown in Table 1.

Appendix VIII to Part 261 of 40CFR, which lists specific constituents of concern contained in hazardous waste, was first published in the May 19, 1980 Federal Register. It has been updated semi-annually in 40CFR Part 261 and contains 414 identifiable compounds. Including all possible waste entries such as inorganics, organometallics, PCDDs, PCDFs and N.O.S. (not otherwise specified) compounds, it contains approximately 850 compounds. EPA recommends that Appendix VIII compounds be used for selecting the POHC chemicals to be designated for testing during trial burns.

3. CAAA chemicals

Subsequent to the development of the RCRA rules, the U.S. Congress passed the CAAA in 1990. One of the key elements in the Amendments is the control of the 190 hazardous air pollutants (HAPs) from major sources. The HAPs are listed in Title III of

Table 1

the 1990 CAAA (Section 112). A major source is defined as any stationary source or group of stationary sources located within a contiguous area and under common control that emits, or has the potential to emit in the aggregate, 10 tons per year or more of any hazardous air pollutant or 25 tons per year or more of any combination of hazardous air pollutants. The EPA Administrator may establish a lesser quantity, or in the case of radionuclides, establish different criteria for the definition of "major source" than this on the basis of the potency of the air pollutant, persistence, potential for bioaccumulation, other characteristics of the air pollutant, or other relevant factors (Section 112, CAAA).

4. List of RCRA and CAAA chemicals

The 414 identifiable Appendix VIII compounds and the 190 HAP compounds are provided in the Table Addendum to this Paper [12,13]. The Table Addendum shows that only 96 compounds belong to both the Appendix VIII list and to the HAP chemicals list. The main reason for generating this listing is to provide a ready-reference so that when specific PICs have to be identified in the future, the compounds which appear on both the HAP and Appendix VIII lists can be used as the first step in the identification process.

5. PIC chemicals

Recent researchers, in studies conducted for the EPA, have concluded that PIC formation can result from any of the following hypotheses: (1) PICs are a natural consequence of the thermal degradation of toxic wastes; (2) PIC emission rates are kinetically, not thermodynamically, controlled; and (3) Deviation from normal, average operating conditions are responsible for most PIC emissions [14].

There are two major PIC information sources provided by the EPA. They are: (1) The laboratory/investigative studies of PIC formation by the University of Dayton Research Institute (UDRI) [15]; and (2) The full-scale studies of PICs from hazardous waste combustion by the Midwest Research Institute (MRI) and others [11,16,17]. UDRI's studies focused on the theoretical aspects of PIC formation. UDRI researchers conducted numerous laboratory tests to support their theoretical hypotheses. They also analyzed full-scale PIC data to compare with their laboratory results.

Parallel to UDRI's efforts, MRI's work emphasized the collection and analysis of full-scale incinerator PIC emission data generated from waste incineration and fossil-fuel combustion studies. The studies included 9 boilers co-fired with hazardous waste; 8 hazardous waste incinerators; 6 cement (and other types of) kilns; 2 municipal waste combustors; and 7 fossil fuel boilers (see Table 2).

5.1. PICs from combustors

In the Table Addendum, it can be seen that, of the 53 PICs found in combustor emissions, 33 PIC compounds appear in 40 CFR 261 Appendix VIII (i.e., these PIC

Symbols used in	the Table addendum and their respective combustors
B1 * (site B):	Boiler by Cleaver Brooks, 250 hp, 8,400 lb hr ⁻¹ of steam, firetube, natural gas
B2 (site C):	Boiler by Babcock and Wilcox, 230,000 lb hr ⁻¹ of steam, multi-burner watertube, natural gas
B3 (site D):	Boiler by Babcock and Wilcox, 90,000 lb hr ⁻¹ of steam, multi-burner watertube,
B4 (site E):	No. 6 oil Boiler by Combustion Engineering, 110,0001b hr ⁻¹ of steam, single bumer,
B5 (site F):	packaged watertube, No. 6 oil and natural gas Boiler by Babcock and Wilcox, 60,000 lb hr ⁻¹ of steam, multi-burner watertube,
	No. 6 oil
B6 (site G):	Boiler by Johnston, 40,000 lb hr ⁻¹ of steam, multi-burner watertube, natural gas used only for start-up
B7 (site I):	Boiler by Foster Wheeler, 62,000 lb hr ⁻¹ of steam, bent watertube, natural gas
B8 (site J):	Boiler by North American, 200 hp, packaged firetube boiler
B9 (site K):	Boiler by Combustion Engineering, 60,000 lb hr ⁻¹ of steam, watertube, No. 6 oil
I1:	Incinerator at Trade Waste Incineration, two-chamber liquid injection type and a
	fixed hearth
I2:	Incinerator at DuPont, kiln/afterburner and liquid injection system in parallel
I3:	Incinerator at American Cyanamid, liquid injection
I4:	Incinerator at Zapata, liquid injection
15:	Incinerator at Upjohn, liquid injection
I6:	Incinerator at Mitchell, two chamber liquid injection and hearth
I7:	Incinerator at Ross, kiln with secondary chamber
I8:	Incinerator at Plant B (a confidential site)
K1:	Cement kiln at General Portland Cement, Los Robles, California, 1982
K2:	Cement kiln at General Portland Cement, Los Robles, California, 1984
K3:	Cement kiln at San Juan Cement Company
K4:	Light-weight aggregate kiln at Florida Solite Company
K5:	Cement kiln at Lone Star Industries
K6:	Cement kiln at General Portland Cement, Paulding, Ohio
M1:	Resource recovery municipal solid waste (MSW) incinerator
M2:	MSW incinerator at Prince Edward Island, Canada
P1:	Power Plant No. 1
P2:	Power Plant No. 2
P3:	Power Plant No. 3
P4:	Power Plant No. 4
P5:	Power Plant No. 5
P6:	Power Plant No. 6
P7 :	Power Plant No. 7

* Symbols of combustors used in the Table Addendum

compounds were found to be emitted during tests on the combustors identified in Table 2) and 20 PIC compounds do not appear in Appendix VIII. The analysis of this PIC information indicated that [16]:

(1)Most PIC compounds were emitted infrequently and at relatively low levels.

(2)Generally, volatile PICs were emitted more frequently and at higher levels than semivolatile PICs.

(3)The emission rates for several volatile PICs, particularly benzene and toluene,

204

Table 2

were similar for hazardous waste incinerators, and for boilers co-firing wastes, as compared to emission rates for boilers firing only fossil fuels.

(4)Based on the data reviewed, there is no direct correlation between the POHCs tested and PICs emitted.

5.2. PICs for risk assessment

In Reference numbers [18] and [19], EPA has developed two draft lists of chemicals for potential use in performing risk analysis calculations for a waste incineration facility. The chemicals in the two lists are shown in the Table Addendum of this Paper as "r4" and "r5" under the "Risk PICs" column. The sources for these "boiled down" lists included:

• The hazardous waste constituent list in 40 CFR 261 Appendix VIII (A8);

- The EPA hazardous air pollutants (HAP) list; and
- The EPA/Office of Research and Development list of organic compounds found in

CAS No.	Precursor Chemicals	CAAA	RCRA
108-861	bromobenzene		
95-567	bromophenol(o-)		
89-645	chloro-2-nitrophenol(4-)		
97-507	chloro-2,4-dimethoxyaniline(5-)		
350-301	chloro-4-fluoronitrobenzene(3-)		
92-046	chloro-4-phenylphenol(2-)		
94-746	chloro-o-toloxy acetic acid(4-)		
108-907	chlorobenzene	HAP	A8
348-516	chlorofluorobenzene(o-)		
615-678	chlorohydroquinone		
95-578	chlorophenol(o-)		
95-885	chlororesorcinol(4-)		
827-941	dibromo-4-nitroaniline(2,6-)		
89-612	dichloro-2-nitrobenzene(1,4-)		
99-309	dichloro-4-nitroaniline(2,6-)		
99-547	dichloro-4-nitrobenzene(1,2-)		
95-501	dichlorobenzene(o-)	HAP	A8
106-467	dichlorobenzene(p-)	HAP	A8
94-815	methyl-4-chlorophenoxy(4-(2-)) butyric acid		
87-843	pentabromo-6-chloro-cyclohexane(1,2,3,4,5-)		
85-223	pentabromoethylbenzene		
117-180	tetrachloro-3-nitrobenzene(1,2,4,5-)		
95-943	tetrachlorobenzene(1,2,4,5-)	HAP	A8
626-391	tribromobenzene(1,3,5-)		
87-616	trichlorobenzene(1,2,3-)		
120-821	trichlorobenzene(1,2,4-)	HAP	A8
108-703	trichlorobenzene(1,3,5-)		
89-690	trichloronitrobenzene(2,4,5-)		

HDD/HDF precursor chemical compounds

Table 3

combustion devices (includes PICs found in emissions from hazardous waste combustion devices and other combustion devices).

5.3. Dioxin and furan

Neither the UDRI nor the MRI study addressed the subject of dioxin and furan emissions. These are, of course, the PIC compounds of most concern for the public at large. Twenty-eight (28) compounds have been listed in 40 CFR Part 766.38 as precursors of the halogenated dibenzodioxins (HDDs) and the halogenated dibenzofurans (HDFs). These 28 compounds are listed in Table 3. The term "precursors" means that the molecular structure of these compounds is conducive to HDD/HDF formation under favorable reaction conditions. In other words, these precursor compounds, when they are burned or incinerated, may produce some dioxins or furans as part of their PICs. As shown in Table 3, only 5 of these 28 precursor compounds appear on both the HAP and Appendix VIII lists (all the others shown there appear on only one or neither of those lists).

6. CAAA metals and RCRA metals

The potential emission of volatile metals is another major issue to the public. Information in this area is scarce. In fact, the Table Addendum does not even show the few sites where metals data was gathered during the EPA full-scale testing program. Table 4, however, does provide the list of metals which are regulated under the CAAA or under RCRA. These metals, if they are in incinerator feeds, may produce volatile metals species as combustion byproducts which may be more hazardous than the organic PIC compounds. It is interesting to note that two metals, cobalt and manganese,

CAS No.	Metals	CAAA	RCRA
7440-360	antimony (Sb)	HAP	A8
7440-382	arsenic (As)	HAP	A8
7440-393	barium (Ba)		A8
7440-417	beryllium (Be)	HAP	A8
7440-439	cadmium (Cd)	HAP	A8
7440-473	chromium (Cr)	HAP	A8
7440-484	cobalt (Co)	HAP	
7439-921	lead (Pb)	HAP	A8
7439-965	manganese (Mn)	HAP	
7439-976	mercury (Hg)	HAP	A8
7440-020	nickel (Ni)	HAP	A8
7782-492	selenium (Se)	HAP	A8
7440-224	silver (Ag)		A8
7440-280	thallium (Tl)		A8
Total Number of Metals	14	11	12

Table 4 Metals regulated under CAAA or RCRA

regulated under the CAAA are not regulated under RCRA. Similarly, three metals, barium, silver, and thallium, regulated under RCRA are not regulated under the CAAA.

7. Conclusion

This article has provided information on the chemicals and metals which are regulated under the CAAA of 1990 and the RCRA of 1976. It also has presented information on those PIC chemicals (those products of incomplete combustion) which were detected in emissions from full-scale hazardous waste-burning incinerators, boilers and cement kilns during EPA's research testing program conducted in the 1980s. It also has listed those PIC chemicals which EPA/RCRA permit writers are considering be the subject of risk assessment calculations during the process of evaluating whether to grant an operating permit for an incinerator or other type of thermal destruction device.

Appendix A. Table Addendum — PICs for risk studies vs. measured PICs and RCRA compounds vs. CAAA compounds

CAS No.	Chemical compounds	Risk PICs ¹	RCR	A CAAA Measured (A) PICs
75-070	acetaldehyde	r4	-	HAP
60-355	acetamide			HAP
75-058	acetonitrile (C_2H_3N)		A8	HAP
98-862	acetophenone (C_8H_8O)	r4	A8	HAP
75-365	acetyl chloride ($\check{C}_2\check{H}_3ClO$)		A8	
591-082	acetyl-2-thiourea(1-)		A8	
53-963	acetylaminofluorene(2-)		A8	HAP
107-028	acrolein (C_3H_4O)	r4	A8	HAP
79-061	acrylamide (C_3H_5NO)		A8	HAP
79-107	acrylic acid			HAP
107-131	acrylonitrile (C_3H_3N)	r4	A8	HAP
1402-682	aflatoxins		A8	
116-063	aldicarb $(C_7 H_{14} N_2 O_2 S)$		A8	
309-002	aldrin $(C_{12}H_8Cl_6)$		A8	
107-186	allyl alcohol (C_3H_6O)		A8	
107-051	allyl chloride (C_3H_5Cl)		A8	HAP
20859-738	8 aluminum phosphide		A8	
92-671	aminobiphenyl(4-)		A8	HAP
2763-964	aminomethyl-3-isoxazolol(5-)		A8	
504-245	aminopyridine(4-)		A8	
61-825	amitrole ($C_2H_4N_4$)		A8	

¹ See legend at the end of the Table

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
	ammonia	r5				
7803-556	ammonium vanadate (NH ₄ VO ₃)		A8			
62-533	aniline (C_6H_7N)	r5	A8	HAP		
90-040	anisidine(0-)	r5		HAP		
120-127	anthracene	r4				
7440-360	antimony (Sb)	r4	A8			
	antimony compounds			HAP		
	antimony compounds, N.O.S.		A8			
140-578	aramite $(C_{15}H_{23}ClO_4S)$		A8			
7440-382	arsenic (As)	r4	A8			
7778-394	arsenic acid (AsH_3O_4)		A8			
	arsenic compounds			HAP		
	(inorganic including arsine)		4.0			
1202 202	arsenic compounds, N.O.S.		A8			
1303-282	arsenic pentoxide (As_2O_5)		A8			
1327-533	arsenic trioxide (As_2O_3)		A8	IIAD		
1332-214	asbestos		A 0	HAP		
492-808	auramine		A8			
115-026	azaserine $(C_5H_7N_3O_4)$	-5	A8			
103-333	azobenzene	r5	4.0			
7440-393	barium (Ba)	r4	A8			
510 601	barium compounds, N.O.S.		A8 A8			
542-621	barium cyanide ($C_2 BaN_2$)					
98-873	benzal chloride $(C_7H_6Cl_2)$	-1	A8			
100-527	benzaldehyde	r4 r4	A Q		D2 D6.	•.
71-432	benzene (C_6H_6)	14	A8		B2-B6; B8; I1-I8; K1-K6	v
71-432	benzene (including benzene from gasoline)			HAP		
98-055	benzenearsonic acid ($C_6H_7AsO_3$)		A8			
92-875	benzidine ($C_{12}H_{12}N_2$)		A8	HAP		
106-514	benzoquinone(p-)		A8			
96-077	benzotrichloride	r4				
98-077	benzotrichloride ($C_7H_5Cl_3$)	- •	A8	HAP		
50-328	benzo[a]pyrene ($C_{20}H_{12}$)	r4	A8			
205-992	benzo[b]fluoranthene	r4	A8			
	benzo[e]pyrene	r4				
	benzo[g,h]perylene	r4				
205-823	benzo[j]fluoranthene	r4	A8			

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
207-089	benzo[k]fluoranthene	r4	A8			
100-447	benzyl chloride	r4				
100-447	benzyl chloride ($C_{2}H_{7}Cl$)		A8	HAP		
56-553	benz[a]anthracene (benzo[a]anthracene)	r4	A8		B3	sv
225-514	benz[c]acridine		A8			
7440-417	beryllium (Be)	r4	A8			
/440-41/		14	Ao	TIAD		
	beryllium compounds		4.0	HAP		
	beryllium compounds, N.O.S.		A8			
92-524	biphenyl	r4		HAP		
111-911	bis(2-chloroethoxy)methane	r4				
111-444	bis(2-chloroethyl)ether				B3; B4	v
39638-329	bis(2-chloroisopropyl)ether				B5; B6	sv
117-817	bis(2-ethylhexyl)phthalate	r4		HAP	B2-B6; I1;	sv
	(BEHP)				I5; I6; M1;	
					M2; P1-P7	
542-881	bis(chloromethyl)ether	r5		HAP		
598-312	bromoacetone (C_3H_5BrO)		A8			
74-975	bromochloromethane	r4			I1; I5	v
15-274	bromodichloromethane	r4			I1; I2; I5;	v
					I7; B5	-
590-602	bromoethane	r4			,	
75-252	bromoform (CHBr ₄)	r4	A8	HAP	B5; I1;	v
			110		12; 15	•
74-839	bromomethane	r4				v
101-553	bromophenyl phenyl ether(4-)	14	A8		15, 55, 50	v
357-573	brucine $(C_{23}H_{26}N_2O_4)$		A8			
106-990	butadiene $(1,3-)$	r4	AO	HAP		
35-687	butyl benzyl phthalate	14	A8	IIAr	D6. 16. 19.	017
55-067	butyi benzyi phulalate		Ao		B6; I6; I8;	sv
5 (17	had the second shell a late				M1; P1-P4	
35-667	butylbenzyl phthalate	r4	• •			
75-605	cacodylic acid $(C_2H_7AsO_2)$		A8			
7440-439	cadmium (Cd)	r4	A8			
	cadmium compounds			HAP		
	cadmium compounds, N.O.S.		A8			
13765-190	calcium chromate (CaCrO ₄)		A8			
56-627	calcium cyanamide			HAP		
592-018	calcium cyanide $(Ca(CN)_2)$		A8			
05-602	caprolactam			HAP		
33-062	captan			HAP		
53-252	carbaryl			HAP		
75-150	carbon disulfide	r5	A8	HAP		

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
353-504	carbon oxyfluoride (COF_2)		A8			
56-235	carbon tetrachloride (CCl_4)	г4	A8	HAP	B3-B6; B8; I1-I7; K2; K3	v
463-581	carbonyl sulfide			HAP		
120-809	catechol			HAP		
75-876	chloral		A8			
133-904	chloramben			HAP		
305-033	chlorambucil ($C_{14}H_{19}Cl_2NO_2$)		A8			
57-749	chlordane (alpha and gamma isomers)		A8			
57-749	chlordane ($C_{10}H_6Cl_8$)	r4	A8	HAP		
	chlorinated benzenes, mono-, di-, tri-, tetra-, and penta-		A8			
	chlorinated ethane, N.O.S.		A8			
	chlorinated fluorocarbons, N.O.S.		A8			
	chlorinated naphthalene, N.O.S.		A8			
	chlorinated phenol, N.O.S.		A8			
7782-505	chlorine			HAP		
494-031	chlornaphazin ($C_{14}H_{15}Cl_2N$)		A8			
59-507	chloro-m-cresol(p-)		A8			sv
107-200	chloroacetaldehyde (C_2H_3ClO)		A8			
79-118	chloroacetic acid			HAP		
532-274	chloroacetophenone(2-)	r4		HAP		
	chloroalkyl ethers, N.O.S.		A8			
106-478	chloroaniline(p-)	r4	A8			SV
108-907	chlorobenzene	r4	A8	HAP	B4-B6; B8; I1-I4; I5-I7; K2	v
510-156	chlorobenzilate ($C_{16}H_{14}Cl_2O_3$) chlorocyclopentadiene	r4	A8	HAP		sv
110-758	chloroethyl vinyl ether(2-)		A8			v
67-663	chloroform (CHCl ₃)	r4	A8	HAP	B3-B6; I1-I8; K3; K6	v
74-873	chloromethane	r4			B6	v
107-302	chloromethyl methyl ether		A8	HAP		
91-587	chloronaphthalene(beta-)	r4	A8			
95-578	chlorophenol(2-)	r4	A8			sv
2039-874	chlorophenol(o-)				B3; I5	sv
5344-821	chlorophenylthiourea(1-(o-))		A8			
126-998	chloroprene		A8	HAP		

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
75-296	chloropropane(2-)	r4				
542-767	chloropropionitrile(3-)		A8			sv
7440-473	chromium (Cr)	r4	A8			
	chromium compounds			HAP		
	chromium compounds, N.O.S.		A8			
218-019	chrysene ($C_{18}H_{12}$)	r4	A8			
6358-538	citrus red No. 2		A8			
8007-452	coal tar creosote		A8			
	cobalt compounds			HAP		
	coke oven emissions			HAP		
544-923	copper cyanide (CuCN)		A8			
8001-589	creosote		A8			
1319-773	cresol (C_7H_8O)		A8			
108-394	cresol(m-)	r4		HAP		
95-487	cresol(o-)	r4		HAP		
106-445	cresol(p-)	r4		HAP		
1319-773	cresols/cresylic acid (isomers			HAP		
1019 110	and mixture)			14/11		
4170-303	crotonaldehyde	r4	A8			
98-828	cumene	r5	110	HAP		
	cyanide compounds	10		HAP		
	cyanides (soluble salts and		A8			
	complexes), N.O.S.		110			
460-195	cyanogen (C_2N_2)	r5	A8			
506-683	cyanogen bromide (CNBr)	r5	A8			
506-774	cyanogen chloride (CNCl)	r5	A8			
	cycasin ($C_8H_{16}N_2O_7$)		A8			
131-895	cyclohexyl-4,6-dinitro-	r5	A8			
	phenol(2-)					
50-180	cyclophosphamide		A8			
	$(C_7H_{15}Cl_2N_2O_2P)$		110			
94-757	D(2,4-)	r4	A8			
94-757	D(2,4-) salts and esters		A8	HAP		
	daunomycin		A8			
72-548	DDD (dichlorodiphenyl-		A8			
	dichloroethane)					
3547-044	DDE	r4		HAP		
72-559	DDE (dichlorodiphenyl-		A8			
	dichloroethylene)					
50-293	DDT (dichlorodiphenyl-		A8			
	trichloroethane)					

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
117-840	di-n-octylphthalate	r4			B4; P1; P3; P5	sv
	di-n-propylnitrosamine	r5				
2303-164	diallate $(C_{10}H_{17}Cl_2NOS)$		A8			
334-883	diazomethane			HAP		
32-649	dibenzofurans			HAP		
	dibenzo[a,e]fluoranthene	r5				
92-654	dibenzo[a,e]pyrene		A8			
	dibenzo[a,h]fluoranthene	r5				
89-640	dibenzo[a,h]pyrene		A8			
89-559	dibenzo[a,i]pyrene		A8			
94-592	dibenzo[c,g]carbazole(7h-)		A8			
26-368	dibenz[a,h]acridine		A8			
3-703	dibenz[a,h]anthracene	r4	A8			
	$(C_{22}H_{14})$					
24-420	dibenz[a,j]acridine		A8			
6-128	dibromo-3-chloro-	r4	A8	HAP		v
	propane(1,2-)					
4-742	dibutyl phthalate	r4	A8	HAP	B2-B6;	sv
	• •				M1;	
					P1-P4	
64-410	dichloro-2-butene(1,4-)		A8			
64-410	dichloro-2-butene(cis-1,4-)	r4			I2	v
64-410	dichloro-2-butene(trans-1,4-)	r4				
5321-226	dichlorobenzene, N.O.S.		A8			
5-501	dichlorobenzene(1,2-)	r4				
5-501	dichlorobenzene(1,3-)	r4				
06-467	dichlorobenzene(1,4-)	r4				
41-731	dichlorobenzene(m-)		A8		B3; I5; I8	sv
5-501	dichlorobenzene(o-)		A8		I5; I8	sv
06-467	dichlorobenzene(p-)		A8	HAP	B3; I5; I8	sv
1-941	dichlorobenzidine(3,3'-)	r5	A8	HAP		sv
5-718	dichlorodifluoromethane	r4	A8			v
	(CFC-12)					
5-343	dichloroethane(1,1-)				B3; B6	v
07-062	dichloroethane(1,2-)				B3; B5; B6	5 v
07-062	dichloroethane(1,2-)	r4				
11-444	dichloroethyl ether		A8	HAP		
	$(C_4H_8Cl_2O)$					
5323-302	dichloroethylene, N.O.S.		A8			
5-354	dichloroethylene(1,1-)	r4	A8		B3; B4;	v
	$(C_2H_2Cl_2)$				B5; B6	

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
540-590	dichloroethylene(1,2-)				B4; B5	v
156-605	dichloroethylene(trans-1,2-)	r4	A8			v
108-601	dichloroisopropyl ether	r5	A8			
111-911	dichloromethoxy ethane		A8			
542-881	dichloromethyl ether	r5	A8			
	dichloropentadiene	r5				
120-832	dichlorophenol(2,4-)	r4	A8		B3	sv
37-650	dichlorophenol(2,6-)		A8			sv
596-286	dichlorophenylarsine		A8			
26638-197	dichloropropane, N.O.S.		A8			
542-756	dichloropropane(1,3-)		A8	HAP		
26545-733	dichloropropanol (C_3H_6ClO) N.O.S.		A8			
	dichloropropene, N.O.S.		A8			
542-756	dichloropropene(cis-1,3-)	r4				
542-756	dichloropropene(trans-1,3-)	r4				
542-756	dichloropropylene				B5	v
52-737	dichlorvos			HAP		
50-571	dieldrin ($C_{12}H_8Cl_6O$)		A8			
464-535	diepoxybutane(1,2:3,4-)		A8			
111-422	diethanolamine			HAP		
34-662	diethyl phthalate	r4	A8		B3-B5; I5;	sv
					I8; M1; P1-P4	
54-675	diethyl sulfate			HAP		
21-697	diethyl(n,n-) aniline			HAP		
297-972	diethyl-o-pyrazinyl		A8			
	phosphorothioate(0,0-)					
311-455	diethyl-p-nitrophenyl phospate		A8			
3288-582	diethyl-s-methyl		A8			
	dithiophosphate(0,0-)					
592-422	diethylarsine		A8			
123-911	diethylenedioxide(1,4-)		A8			
117-817	diethylhexyl phthalate		A8			
1615-801	diethylhydrazine(n,n'-)		A8			
56-531	diethylstilbesterol		A8			
94-586	dihydrosafrole		A8			
55-914	diisopropyl fluorophosphate (DFP)		A8			
50-515	dimethoate ($C_5H_{12}NO_3PS_2$)		A8			
119-904	dimethoxybenzidine(3,3'-)	r4	A8	HAP		
	dimethyl aminoazobenzene	r5				

C.C. Lee et al. / Journal of	of Hazardous Materials 50 (1996) 199–225	

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
119-937	dimethyl benzidine(3,3'-)		A8	HAP		
79-447	dimethyl carbamoyl chloride		A8	HAP		
68-122	dimethyl formamide			HAP		
57-147	dimethyl hydrazine(1,1-) $(C_2H_8N_2)$		A8	HAP		
31-113	dimethyl phthalate ($C_{10}H_{10}O_4$)	r4	A8	HAP	B6; I8; P1; P7	sv
7-781	dimethyl sulfate ($C_2H_6O_4S$)	r5	A8	HAP		
50-117	dimethylaminoazobenzene(p-)		A8			
57-976	dimethylbenz[a]anthracene(7,12-)		A8			
540-738	dimethylhydrazine(1,2-)	r5	A8			
	dimethylnitrosamine	r5				
22-098	dimethylphenethylamine- (alpha,alpha-)	10	A8			
05-679	dimethylphenol(2,4-)	r4	A8		B5; B6; I6; I7	sv
534-521	dinitro-o-cresol(4,6-) $(C_7H_6N_2O_5)$	r5	A8		10, 17	
534-521	dinitro-o-cresol(4,6-) and salts		A8	HAP		
5154-545			A8	1111		
9-650	dinitrobenzene(1,3-)	r4	AO			
9-050	dinitrobenzene(0-)	r4				
00-294	dinitrobenzene(p-)	r4				
	dinitrophenol(2,4-)	r5	A8	HAP		
1-285						
21-142	dinitrotoluene(2,4-) dinitrotoluene(2,6-)	r4	A8 A8	HAP		
06-202		r4				
8-857	dinoseb $(C_{10}H_{12}N_2O_5)$ dioxane(1,4-)	-1	A8	TIAD		
23-911		r4		HAP		
22-394	diphenylamine	r5	A8	IIAD		
22-667	diphenylhydrazine(1,2-)	r5	A8	HAP		
98-044	disulfoton (disyston) $(C_8H_{19}O_2PS_3)$		A8			
541-537	dithiobiuret		A8			
15-297	endosulfan ($C_9H_6Cl_6O_3S$)		A8			
45-733	endothall ($C_8H_{10}O_5$)	r5	A8			
2-208	endrin $(C_{12}H_8Cl_6O)$ endrin and metabolites		A8 A8			
106-898	epichlorohydrin	r5	A8	HAP		
51-434	epinephrine $(C_9H_{13}NO_3)$		A8			
106-887	epoxybutane(1,2-) ethoxyethanol	r5		HAP		
140-885	ethyl acrylate	-		HAP		

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
00-414	ethyl benzene			HAP		
51-796	ethyl carbamate $(C_3H_7NO_2)$	r5	A8	HAP		
5-003	ethyl chloride	r5		HAP		
07-120	ethyl cyanide		A8			
7-632	ethyl methacrylate	r5	A8			
2-500	ethyl methanesulfonate	r5	A8			
	$(C_3H_8O_3S)$					
00-414	ethylbenzene	r4				
06-934	ethylene dibromide (EDB)	r4	A8	HAP		
07-062	ethylene dichloride		A8	HAP		
07-211	ethylene glycol	r5		HAP		
11-762	ethylene glycol monobutyl	r5				
	ether					
	ethylene glycol monoethyl	r5				
	ether					
10-805	ethylene glycol monoethyl	r5	A8			
	ether					
5-218	ethylene oxide	r4	A8	HAP		
6-457	ethylene thiourea	r4	A8	HAP		
11-546	ethylenebisdithio-carbamic acid		A8			
11-546	ethylenebisdithio-carbamic acid salts & esters		A8			
51-564	ethyleneimine (C_2H_5N)		A8	HAP		
5-343	ethylidene dichloride	r4	A8	HAP		
2-857	famphur ($C_{10}H_{16}NO_5PS_2$)		A8			
	fine mineral fibers			HAP		
06-440	fluoranthene	r4	A8		B2; B4; I7; M1;	sv
707 111	fluorine				M2; P1	
782-414 40-197	fluoroacetamide		A8 A8			
40-197 2-748	fluoroacetic acid, sodium salt		Að Að			
2-748 0-000	formaldehyde (CH_2O)	r4	A8 A8	HAP		
4-186	formic acid (CH_2O_2)	r5	A8	11171		
- 10V	furfural	r5	110			
65-344	glycidylaldehyde	r5	A8			
00 077	glycol ethers	15	110	HAP		
	halomethanes, N.O.S.		A8	*** **		
6-448	heptachlor ($C_{10}H_5Cl_7$)	r4	A8	HAP		
D-44A						

C.C. Lee et al. / Journal of Hazardous Materials 50 (1996) 199-225

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
	heptachlor epoxide (alpha,		A8			
	beta, and gammer isomers)					
	heptachlorodibenzo-p-dioxins		A8			
	heptachlorodibenzo-p-dioxin-	r4				
	(1,2,3,4,6,7,8)					
	heptachlorodibenzofuran-	r4				
	(1,2,3,4,7,8,9)					
	heptachlorodibenzofuran-	r4				
	(1,2,3,4,6,7,8)					
	heptachlorodibenzofurans		A8			
118-741	hexachlorobenzene	r4	A8	HAP	B6; I5; I8	sv
87-683	hexachlorobutadiene	r4	A8	HAP		sv
	hexachlorocyclohexane- (gammar)	r4				
319-846	hexachlorocyclohexane(alpha)	r4				
319-857	hexachlorocyclohexane(beta)	r4				
77-474	hexachlorocyclopentadiene	r4	A8	HAP		sv
	hexachlorodibenzo-p-dioxins		A8			
	hexachlorodibenzo-p-dioxin- (1,2,3,6,7,8)	r4				
	hexachlorodibenzo-p-dioxin- (1,2,3,4,7,8)	r4				
	hexachlorodibenzo-p-dioxin- (1,2,3,7,8,9)	r4				
	hexachlorodibenzofuran- (1,2,3,7,8,9)	r4				
	hexachlorodibenzofuran- (2,3,4,6,7,8)	r4				
	hexachlorodibenzofurans		A8			
	hexachlorodibenzofuran- (1,2,3,4,7,8)	r4				
	hexachlorodibenzofuran- (1,2,3,6,7,8)	r4				
57-721	hexachloroethane	r4	A8	HAP		sv
70-304	hexachlorophene	r4	A8			
1888-717	hexachloropropene		A8			sv
757-584	hexaethyl tetraphosphate		A8			
822-060	hexamethylene-1,6-diisocyanate	r5		HAP		
580-319	hexamethylphosphoramide			HAP		
110-543	hexane (n-hexane)	r4		HAP		
302-012	hydrazine ($H_4 N_2$)		A8	HAP		

C.C. Lee et al. / Journal of Hazardous Materials 50 (1996) 199–225 217	C.C. Lee et al. / Journal of Hazardous Materials 50 (1996) 199–225	217
--	--	-----

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
7647-010	hydrochloric acid			HAP		
74-908	hydrogen cyanide (HCN)		A8			
7664-393	hydrogen fluoride (HF)		A8	HAP		
7783-064	hydrogen sulfide (H_2S)		A8	HAP		
123-319	hydroquinone			HAP		
193-395	indeno[1,2,3-cd]pyrene	r4	A8			
78-831	isobutyl alcohol ($C_4H_{10}O$)		A8			
465-736	isodrin		A8			
78-591	isophorone			HAP		
120-581	isosafrole ($C_{10}H_{10}O_2$)		A8			
143-500	kepone		A8			
303-344	lasiocarpine ($C_{21}H_{33}NO_7$)		A8			
7439-921	lead (Pb)	r4	A8			
301-042	lead acetate ($C_4H_6O_4Pb$)		A8			
	lead compounds			HAP		
	lead compounds, N.O.S.		A8			
7446-277	lead phosphate $(Pb_3(PO_4)_2)$		A8			
1335-326	lead subacetate		A8			
58-899	lindane		A8			
58-899	lindane (all isomers)			HAP		
108-316	maleic anhydride $(C_4H_2O_3)$		A8	HAP		
123-331	maleic hydrazide $(C_2H_4N_2O_2)$	r4	A8			
109-773	malononitrile $(C_3H_2N_2)$	r5	A8			
	manganese compounds			HAP		
148-823	melphalan ($C_{13}H_{18}Cl_2N_2O_2$)		A8			
7439-976	mercury	r4	A8			
	mercury compounds			HAP		
	mercury compounds, N.O.S.		A8			
628-864	mercury fulminate		A8			
	methacrylonitrile	r5				
126-987	methacrylonitrile (C_4H_5N)		A8			
67-561	methanol			HAP		
91-805	methapyrilene ($C_{14}H_{19}N_3S$)		A8			
	methomyl ($C_5H_{10}N_2O_2S$)		A8			
72-435	methoxychlor ($C_{16}H_{15}Cl_{3}O_{2}$) methoxyethanol(2-)	r4 r5	A8	HAP		
74-839	methyl bromide (CH_3Br)		A8	HAP		
74-873	methyl chloride (CH_3Cl)		A8	HAP		
79-221	methyl chlorocarbonate		A8			
71-556	methyl chloroform $(C_2H_3Cl_3)$	r4	A8	HAP		
1338-234	methyl ethyl ketone peroxide		A8			

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
78-933	methyl ethyl ketone (MEK)	r4	A8	НАР	I5; I6; I7; K4; K5; K6	v
60-344	methyl hydrazine		A8	HAP		
74-884	methyl iodide		A8	HAP		
108-101	methyl isobutyl ketone	r5		HAP		
624-839	methyl isocyanate	r5	A8	HAP		
	methyl mercury	r5				
80-626	methyl methacrylate		A8	HAP	B4	v
66-273	methyl methanesulfonate		A8			
298-000	methyl parathion		A8			
	methyl styrene (mixed isomers)	r5				
1634-044	methyl tert butyl ether	r5		HAP		
56-495	methylcholanthrene(3-)		A8			
106-872	methylcyclohexane	r4				
101-144	methylene bis(2-chloroaniline)- (4,4'-)		A8	HAP		
74-953	methylene bromide (CH_2Br_2)	r4	A8		I1; I 5	v
75-092	methylene chloride (CH_2Cl_2)	r4	A8	НАР	B2; B4; B5; B6; I1-I7; K1-K3;	v
101-688	methylene diphenyl diisocyanate			HAP	K5; K6	
101-088	methylenedianiline(4,4'-)	r5		НАР НАР		
75-865	methyllactonitrile(2-)	15	A8	IIAF		
56-042	methylthiouracil		A8 A8			
50-077	mitomycin C ($C_{16}H_{19}N_3O_6$)		A8			
70-257	MNNG [methyl-n'-nitro-a- nitrosoguanidine(n-)]		A8 A8			
	mononitrobenzene				I3	sv
505-602	mustard gas ($C_4H_8Cl_2S$)		A8			
91-203	naphthalene	r4	A8	НАР	B3-B6; I1-I3; I5; I6; I8; K5; K6; M1-M2; P1-P7	SV
130-154	naphthoquinone(1,4-)		A8			
134-327	naphthylamine(alpha-)		A8			
91-598	naphthylamine(beta-)		A8			
86-884	naphthylthiourea(alpha-)		A8			

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
7440-020	nickel (Ni)	r4	A8			
13463-393	nickel carbonyl $(Ni(CO)_4)$		A8			
	nickel compounds			HAP		
	nickel compounds, N.O.S.		A8			
557-197	nickel cyanide $(Ni(CN)_2)$		A8			
54-115	nicotine ($C_{10}H_{14}N_2$)		A8			
54-115	nicotine and salts		A8			
10102-439	nitric oxide (NO)		A8			
99-558	nitro-o-toluidine(5-)		A8			
88-744	nitroaniline(o-)	r4				
100-016	nitroaniline(p-)		A8			
98-953	nitrobenzene	r 4	A8	HAP		
92-933	nitrobiphenyl(4-)			HAP		
10102-440	nitrogen dioxide (NO ₂)		A8			
51-752	nitrogen mustard		A8			
55-867	nitrogen mustard,		A8			
	hydrochloride salt					
126-852	nitrogen mustard n-oxide		A8			
302-705	nitrogen mustard, n-oxide,		A8			
	hydrochloride salt					
55-630	nitroglycerine $(C_3H_5N_3O_9)$		A8			
100-027	nitrophenol(4-)	r4		HAP		
100-027	nitrophenol(p-)		A8			
79-469	nitropropane(2-) $(C_3H_7NO_2)$		A8	HAP		
35576-911	nitrosamines, N.O.S.		A8			
759-739	nitroso-n-ethylurea(n-)		A8			
615-532	nitroso-n-methylurethane(n-)		A8	TTAD		
684-935	nitroso-n-methylurea(n-)			HAP		
684-935	nitroso-n-methylurea(n-)	- 4	A8			
924-163	nitrosodi-n-butylamine(n-)	r4	A8			
1116-547	nitrosodiethanolamine(n-)		A8			
55-185 62-759	nitrosodiethylamine(n-) nitrosodimethylamine(n-)		A8 A8	HAP		
10595-956			Að Að	HAF		
4549-400	nitrosomethylvinylamine(n-)		Að Að			
59-892	nitrosomorpholine(n-)		A8	HAP		
16543-558	nitrosonornicotine(n-)		A8	11/11		
100-754	nitrosopiperidine(n-)		A8			
930-552	nitrosopyrrolidine(n-)		A8			
13256-229	nitrososarcosine(n-)		A8			
	octachlorodibenzo-p-dioxin	r4				
	octachlorodibenzofuran	r4				

C.C. Lee et al. / Journal of Hazardous Materials 50 (1996) 199-22.	5

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
152-169	octamethylpyro-phosphoramide		A8			
20816-120	osmium tetroxide		A8			
123-637	paraldehyde ($C_6H_{12}O_3$)		A8			
56-382	parathion ($C_{10}H_{14}NO_5PS$)		A8	HAP		
608-935	pentachlorobenzene	r4	A8			sv
	pentachlorobenzofurans		A8			
	pentachlorodibenzo-p-dioxins		A8			
	pentachlorodibenzo-p-dioxin- (1,2,3,7,8)	r4				
	pentachlorodibenzofuran- (1,2,3,7,8)	r4				
76-017	pentachloroethane		A8			sv
82-688	pentachloronitrobenzene (PCNB)	r4	A8	HAP		sv
87-865	pentachlorophenol	r4	A8	HAP	15	sv
62-442	phenacetin		A8			
108-952	phenol (C ₆ H ₆ O)	r4	A8	НАР	B2-B6; B9; I2; I6; I8; K3	sv
	phenyl(1-) ethanol				K3	sv
25265-763	• •		A8			
106-503	phenylenediamine(p-)			HAP		
62-384	phenylmercury acetate		A8			
103-855	phenylthiourea		A8			
298-022	phorate $(C_7H_{17}O_2PS_3)$		A8			
75-445	phosgene (CCl ₂ O)	r4	A8	HAP		
7803-512	phosphine (H ₃ P)		A8	HAP		
7723-140	phosphorus			HAP		
	phthalate, N.O.S. *				K3; K6	sv
	phthalic acid ester, N.O.S	_	A8			
85-449	phthalic anhydride $(C_8H_4O_3)$	r5	A8	HAP		
109-068	picoline(2-) (C_6H_7N)		A8	TTAD		
1336-363	polychlorinated biphenyls	-1		HAP		
1336-363	polychlorinated biphenyls (209 congeners)	r4				
	polychlorinated biphenyls (PCBs) (aroclors), N.O.S.		A8			
	polycylic organic matter			HAP		
151-508	potassium cyanide (KCN)		A8			
506-616	potassium silver cyanide ((KAg(CN) ₂)		A8			

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
23950-585	pronamide	r5	A8			sv
1120-714	propane sultone(1,3-)	r5	A8	HAP		
107-197	propargyl alcohol	r5	A8			
57-578	propiolactone (beta-)			HAP		
123-386	propionaldehyde	r4		HAP		
114-261	propoxur			HAP		
107-108	propylamine(n-) (C_3H_9N)		A8			
78-875	propylene dichloride	r4	A8	HAP		
75-569	propylene oxide			HAP		
75-558	propylenimine(1,2-)		A8	HAP		
51-525	propylthiouracil ($C_7 H_{10} N_2 OS$)		A8			
12-900	pyrene				B4; I7; M1; M2; P1	sv
110-861	pyridine (C_5H_5N)	r5	A8			
91-225	quinoline	r4		HAP		
106-514	quinone	r4		HAP		
	radionuclides (including radon)			HAP		
50-555	reserpine $(C_{33}H_{40}N_2O_9)$		A8			
108-463	resorcinol ($C_6H_6O_2$)		A8			
81-072	saccharin ($C_7H_5NO_3S$)		A8			
	saccharin salts		A8			
94-597	safrole $(C_{10}H_{10}O_2)$	r4	A8			
7782-492	selenium (Se)	r4	A8			
	selenium compounds			HAP		
7782-492	selenium compounds, N.O.S.		A8			
7446-084	selenium dioxide (SeO ₂)		A8			
7488-564	selenium sulfide		A8			
	selenourea		A8			
7440-224	silver (Ag)	r4	A8			
	silver compounds, N.O.S.		A8			
506-649	silver cyanide (Ag(CN))		A8			
93-721	silvex		A8			
143-339	sodium cyanide (Na(CN))		A8			
18883-664	streptozotocin ($C_8H_{15}N_3O_7$)		A8			
	strychnine	r5				
57-249	strychnine $(C_{21}H_{22}N_2O_2)$		A8			
	strychnine salts		A8			
100-425	styrene	r4		HAP		
96-093	styrene oxide			HAP		
93-765	T(2,4,5-) (trichlorophenoxy- acetic acid)		A8			

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
95-943	tetrachlorobenzene(1,2,4,5-) $(C_6H_2Cl_4)$	r4	A8		<u> </u>	sv
	tetrachlorodibenzo-p-dioxins		A8			
1746-016	tetrachlorodibenzo-p-dioxin (2,3,7,8-) (TCDD)	r4	A8	HAP		
	tetrachlorodibenzofuran		A8			
5322-207	tetrachloroethane, N.O.S.		A8			
9-345	tetrachloroethane(1,1,2,2-)	r4	A8	HAP	B5; B6	v
30-206	tetrachloroethane(1,1,1,2-) ($C_2H_2Cl_4$)	r4	A8			v
27-184	tetrachloroethylene	r4	A8	HAP	B3-B6; I1-I5; I7; I8; K1; K4; K6	v
8-902	tetrachlorophenol(2,3,4,6-)	r4	A8			sv
8-002	tetraethyl lead ($C_8H_{20}Pb$)		A8			
07-493	tetraethyl pyrophosphate (TEPP)		A8			
689-245	tetraethyldithiopyro-phosphate		A8			
09-148	tetranitromethane		A8			
314-325	thallic oxide		A8			
440-280	thallium (Tl)	r4	A8			
63-688	thallium acetate		A8			
791-120	thallium chloride (TlCl)		A8			
	thallium compounds, N.O.S.		A8			
2039-520	thallium selenite (Tl ₂ Se)		A8			
533-739	thallium(I) carbonate		A8			
0102-451	thallium(I) nitrate (TlNO ₃)		A8			
446-186	thallium(I) sulfate		A8			
2-555	thioacetamide (C_2H_5NS)		A8			
9196-184	thiofanox		A8			
4-931	thiomethanol		A8			
08-985	thiophenol (C_6H_6S)		A8			
9-196	thiosemicarbazide (CH_5N_3S)		A8			
2-566	thiourea (CH_4N_2S)		A8			
37-268	thiram		A8			
550-450	titanium tetrachloride			HAP	•.	
08-883	toluene (C_7H_8)	r4	A8	НАР	B1-B6; B8; I1-I8; K2; K4; K5; K6	v

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
95-807	toluene diamine(2,4-)		A8	HAP		
26471-625	toluene diisocyanate		A8			
584-849	toluene(2,4-) diisocyanate	r5		HAP		
91-087	toluene(2,6-) diisocyanate				I5	sv
823-405	toluene-2,6-diamine	r5	A8			
496-720	toluene-3,4-diamine		A8			
25376-458	toluenediamine		A8			
95-534	toluidine(o-) (C_7H_9N)	r4	A8	HAP		
636-215	toluidine(o-) hydrochloride		A8			
106-490	toluidine(p-) (C_7H_9N)	r4	A8			
8001-352	toxaphene ($C_{10}H_{10}Cl_8$)		A8			
8001-352	toxaphene (chlorinated camphene)			HAP		
120-821	trichlorobenzene(1,2,4-)	r4	A8	HAP	I5; I8; K1	sv
71-556	trichloroethane(1,1,1-)				I3-I6; B3-B6; K1; K2; K5; K6	v
79-005	trichloroethane(1,1,2-)	r4	A8	HAP	B3; B4	v
79-016	trichloroethylene (C_2HCl_3)	r4	A8	HAP	B2-B5; B8; 11-I8; K1; K2	v
75-707	trichloromethanithiol		A8			
75-694	trichloromonofluoromethane (CCl ₃ F)	r4	A8			v
95-954	trichlorophenol(2,4,5-) $(C_6H_3Cl_3O)$	r4	A8	HAP		sv
88-062	trichlorophenol(2,4,6-) ($C_6H_3Cl_3O$)	r4	A8	HAP	B3; B6; I5	sv
25735-299	trichloropropane, N.O.S.		A8			
96-184	trichloropropane(1,2,3-)	r4	A8			v
101 440				TTAD		

HAP

HAP

HAP

sv

A8

A8

A8

A8

A8

r5

r5

121-448

126-681

540-841

99-354

52-244

126-727

72-571

1582-098

triethylamine

 $(C_6H_3N_3O_6)$

trifluralin

sulfide

phosphate

trypan blue

triethylphosphorothioate(0,0,0-)

trimethylpentane(2,2,4-)

tris(1-aziridinyl)phosphine

trinitrobenzene(1,3,5-)

tris(2,3-dibromopropyl)

C.C. Lee et al. / Journal of Hazardous Materials 50 (1996) 199-225

CAS No.	Chemical compounds	Risk PICs	RCRA	CAAA	Measured PICs	(A)
66-751	uracil mustard ($C_8H_{11}Cl_2N_3O_2$)		A8			
1314-621	vanadium pentoxide (V_2O_5)		A8			
108-054	vinyl acetate	r4		HAP		
593-602	vinyl bromide			HAP		
75-014	vinyl chloride (C_2H_3Cl)	r4	A8	HAP	B5; B6	v
75-354	vinylidene chloride	r4		HAP		
81-812	warfarin $(C_{19}H_{16}O_4)$		A8			
81-812	warfarin salts, when present at concentrations greater than 0.3%		A8			
81-812	warfarin salts, when present at concentrations less than 0.3%		A8			
1330-207	xylenes (isomers and mixture)			HAP		
108-383	xylenes(m-)	r4		HAP		
95-476	xylenes(o-)	r4		HAP		
106-423	xylenes(p-)	r4		HAP		
557-211	zinc cyanide $(Zn(CN)_2)$		A8			
1314-847	zinc phosphide (Zn_3P_2) , when present at concentrations of 10% or less		A8			
1314-847	zinc phosphide (Zn_3P_2) , when present at concentrations greater than 10%.					
Overall	-					
totals:	588 compounds	160-r4	414	190	53 PICs found exiting from 310 combustor	34-v
		59-r5			compusion	s 45-sv
		22-13				43-S

A.1. Legend

- A8: Appendix VIII to 40CFR Part 261.
- CAS: Chemical Abstract Service.
- · HAP: Hazardous Air Pollutant.
- N.O.S.: Not Otherwise Specified.
- Column "Risk PICs": "r4" are compounds that the EPA/RCRA permit writers should consider requiring waste incineration facilities to sample and analyze for, to support the conduct of exposure/risk assessments [19].

- Column "Risk PICs": "r5" are additional compounds that the EPA/RCRA permit writers may also want to require the waste incineration facilities to sample and analyze for, to support the conduct of exposure risk assessments [19].
- Column "RCRA": Hazardous Constituents listed in 40CFR261 Appendix VIII under the 1976 Resource Conservation and Recovery Act.
- Column "CAAA": Hazardous Air Pollutants (HAP) listed in Title III of the 1990 Clean Air Act Amendments.
- Column "Measured PICs": PIC compounds emitted from the various combustors shown in Table 2.
- Column "(A)": "v" and "sv" mean volatile and semivolatile compounds, respectively. Information is from 40CFR268 Appendix III, 1993 and Ref. [16].

References

- [1] E. Timothy Oppelt, JAPCA, 37 (1987) 558.
- [2] C.C. Lee, JAPCA, 38 (1988).
- [3] C.C. Lee and G.L. Huffman, Incineration of solid waste, 1988 AIChE Annual Meeting and 80th Anniversary Commemoration, Washington, DC, November 27-December 2, 1988 and published in the J. Environ. Progress, 1989.
- [4] C.C. Lee, G.L. Huffman and S.M. Sasseville, Hazard. Waste Hazard. Mater., 7 (1990).
- [5] C.C. Lee and G.L. Huffman, Thermodynamic fundamentals used in hazardous waste incineration, 1990 Incineration Conference, San Diego, California, May 14–18, 1990.
- [6] C.C. Lee and G.L. Huffman, Regulatory framework for combustion by-products from incineration sources, 1990 Pacific Basin Conference on Hazardous Waste, Honolulu, Hawaii, November 12–16, 1990.
- [7] C.C. Lee and G.L. Huffman, Minimization of combustion byproducts: characteristics of hazardous waste, National Research and Development Conference on the Control of Hazardous Materials, Anaheim, California on February 20-22, 1991.
- [8] C.C. Lee and G.L. Huffman, J. Int. Solid Wastes Public Cleansing Assoc., (ISWA), 9 (1991).
- [9] C.C. Lee and G.L. Huffman, Metals behavior during medical waste incineration, National Meeting of the American Chemical Society, New York, August 26-30, 1991.
- [10] C.C. Lee and G.L. Huffman, Minimization of toxic combustion byproducts: review of current activities, 1993 Pacific Basin Conference on Hazardous Waste, Honolulu, Hawaii, November 8-12, 1993.
- [11] Performance evaluation of full-scale hazardous waste incinerators, Vols. I-V, EPA/600/2-84/181a; 181b; 181c; 181d; and 181e, November 1984.
- [12] C.C. Lee, Environmental Law Index to Chemicals, Second Edition, Government Institutes, Inc., June 1994.
- [13] C.C. Lee, Environmental Engineering Dictionary, Second Edition, Government Institutes, Inc., June 1992.
- [14] B. Dellinger, P. Taylor, D. Tirey, R. Striebich and C.C. Lee, PIC formation research status and control implications, Proceedings of the Sixteenth Annual EPA Research Symposium, April 1990.
- [15] Minimization and control of hazardous combustion byproducts, EPA/600/2-90/039, August 1990.
- [16] Products of incomplete combustion from hazardous waste combustion, a draft report prepared by the Midwest Research Institute for EPA, June 1986.
- [17] Permit writer's guide to test burn data, EPA/625/6-86/012, September 1986.
- [18] Exposure assessment guidance for RCRA hazardous waste combustion facilities, EPA/530-R-94-021, April 1994.
- [19] Implementation guidance for conducting indirect exposure analysis at RCRA combustion units, a draft report from the U.S. EPA Office of Solid Waste, April 22, 1994.